Векторная алгебра

Векторная алгебра описывает способы выполнения различных операций над векторами, в том числе сложение, вычитание, разные типы перемножения. Здесь приводится лишь часть этого раздела математики, непосредственно относящаяся к задачам, наиболее часто возникающим в физической и инженерной практике.


Понятие вектора
   Ограничения
   Основные понятия
      Проекции и координаты вектора
      Некоторые определения
Операции над векторами
   Сложение векторов
   Вычитание векторов
   Умножение вектора на число
   Скалярное произведение векторов
      Вычисление скалярного произведения
      Свойства скалярного произведения
   Векторное произведение векторов
      Вычисление векторного произведения
      Свойства векторного произведения

Понятие вектора

В геометрическом смысле вектор — это направленный отрезок, определяемый точками своего начала и конца. В физическом смысле под векторами обычно понимаются величины, имеющие направление в трёхмерном пространстве. Как правило, они характеризуются абсолютной величиной, направлением и точкой приложения (точкой привязки). Во времена Ньютона эти три категории были достаточно автономны и их увязка была своего рода искусством. Применение концепции векторов позволило формализовать естественную взаимосвязь этих категорий и сделать операции над ними более наглядными и удобными.

Ограничения

В силу специфики сайта векторные операции рассматриваются для наиболее частого случая — трёхмерного пространства, описываемого в декартовой системе координат (три взаимно ортогональные оси отсчёта). Для пространств меньшей мерности (двухмерной плоскости и одномерной прямой) обычно достаточно обнулить «неиспользуемые» координаты. Пространства большей мерности не рассматриваются, поскольку до сих пор являются физической экзотикой. Для работы с ними следует изучить курс векторной алгебры более серьёзно.

В связи с малой практической востребованностью не рассматривается выполнение операций над векторами в полярных и других недекартовых системах координат. Не рассматривается и матричное исчисление, поскольку для трёхмерного пространства алгебраическая форма векторных операций является достаточно простой и удобной, хотя и не столь универсальной. Кроме того, матричное исчисление требует довольно специфического подхода, что затрудняет его применение теми, кто с прежде с матрицами не сталкивался.

Основные понятия

Рассмотрим основные понятия, используемые на этой странице.

Проекции и координаты вектора

Любой трёхмерный вектор можно спроецировать на три взаимно перпендикулярные оси отсчёта, пересекающиеся в одной точке (декартовы оси координат). Выбор точки отсчёта и положение осей (базис системы координат) теоретически непринципиален, но на практике обычно выбирается так, чтобы как можно большее число участвующих в расчёте векторов было направлено вдоль какой-либо из осей координат — это упрощает вычисления.

Каждый вектор можно охарактеризовать координатами двух точек — его начала и конца, — либо проекциями на оси координат и координатами точки привязки (обычно точкой привязки является начало вектора, но иногда бывает удобнее использовать в этом качестве его конец). В физике чаще применяется второй подход. В этом случае в трёхмерном пространстве вектор a описывается шестью величинами — координатами его точки привязки xa, ya, za и проекциями на оси ax, ay и az. Иногда точка привязки не имеет принципиального значения либо подразумевается неявно, и тогда обходятся тремя значениями — проекциями векторной величины на оси координат (ax, ay, az).

Некоторые определения

Модулем вектора |a| в геометрии называется его длина, а в физике — абсолютное значение направленной величины (т.е. значение, измеренное вдоль направления её действия). В ортогональной системе координат модуль вектора равен квадратному корню из суммы квадратов его проекций на оси координат.

Среди всевозможных взаимных ориентаций векторов выделяют коллинеарные и ортогональные вектора.

Коллинеарными называются такие вектора, векторное произведение которых равно нулю. Это параллельные вектора. Коллинеарные вектора могут быть сонаправленными или встречными, то есть направлеными строго в противоположные стороны.

Ортогональными называются такие вектора, скалярное произведение которых равно нулю. Для любого вектора все вектора, лежащие в любой перпендикулярной ему плоскости, будут ортогональны.

Понятие равных векторов менее однозначно. Иногда под этим понимают любые сонаправленные вектора одного размера, расположение точки привязки которых безразлично и может быть в любом месте пространства. Более строгое определение подразумевает и совпадение точек привязки. В физике под «равенством векторов» обычно имеют в виду первый случай (величины и направления одинаковы, положение точки привязки произвольно). Если же одинаковы и точки привязки, то речь идёт о совпадающих (эквивалентных) векторах.

Нулевым является вектор, имеющий нулевую длину, то есть тот, у которого координаты начала и конца строго совпадают. В связи с этим обычно нельзя говорить о направлении такого вектора, поэтому его считают не имеющим направления. Иногда нулевой вектор трактуют как всенаправленный, хотя в строгом смысле это не так.

Операции над векторами

Сложение векторов

В алгебраическом представлении при сложении векторов с = a + b проекция результирующего вектора на оси координат является суммой соответствующих проекций складываемых векторов с учётом их знака:

сx = ax + bx ;
сy = ay + by ;
сz = az + bz .

Если точка привязки не важна, а важна лишь величина (длина и направление) результирующего вектора, то сложение векторов можно считать коммутативной операцией (от перемены мест слагаемых сумма не меняется). В противном случае точка привязки результирующего вектора определяется исходя из физического смысла производимой операции (как правило, в физике точки привязки всех складываемых векторов и суммарного вектора совпадают, — то есть и все слагаемые, и их сумма применимы к одной и той же точке пространства или к одной и той же материальной точке).

Вычитание векторов

Вычитание векторов с = ab можно представить как сложение уменьшаемого вектора с вектором, противоположным вычитаемому по направлению и равным ему по величине. Таким образом, в агебраическом представлении проекции вычитаемого вектора на оси координат меняют свой знак:

сx = ax – bx ;
сy = ay – by ;
сz = az – bz .

Умножение вектора на число

При умножении вектора на число b = k · a в алгебраическом виде достаточно все его проекции умножить на это число:

bx = k · ax ;
by = k · ay ;
bz = k · az .

В строго геометрическом смысле при умножении на число начало вектора остаётся на месте, а «удлиняется» его конец. Однако на физических иллюстрациях часто остаётся на месте точка конца вектора, скажем точка приложения силы, хотя в общем случае этот вопрос всегда определяется физическим смыслом решаемой задачи.

Операция умножения на число является коммутативной  a · k = k · a  (от перемены мест сомножителей результат не меняется). При положительном множителе результирующий вектор сонаправлен с исходным, при отрицательном направление меняется на строго противоположное. Поэтому результат умножения вектора на число всегда коллинеарен с исходным вектором, за исключением случая, когда множитель или исходный вектор являются нулевыми — тогда результатом будет нулевой вектор, говорить о направлении которого некорректно.

Операция умножения на число является дистрибутивной  k · (a + b) = k · a + k · b  (произведение суммы векторов на число равно сумме произведений слагаемых на это же число).

Скалярное произведение векторов

Результатом скалярного перемножения векторов является число, равное произведению их модулей, умноженному на косинус угла между ними.

Вычисление скалярного произведения

В алгебраической форме скалярное произведение  d = a · b  вычисляется как

d = ax · bx + ay · by + az · bz .
Свойства скалярного произведения

Коммутативность:  a · b = b · a .

Дистрибутивность:  a · (b + c) = a · b + a · c .

Сочетательность (линейность) относительно скалярного множителя:  k · (a · b) = (k · a) · b = a · (k · b) .

Скалярный квадрат вектора равен квадрату его модуляa · a = |a|2  (норма вектора).

Векторное произведение векторов


Правая тройка векторов и правая система координат.

Результатом векторного перемножения двух векторов a и b является вектор c, длина которого равна произведению их модулей, умноженному на синус угла между ними, а сам вектор ориентирован таким образом, что перпендикулярен обоим исходным векторам, и тройка a b c является правой.

Вычисление векторного произведения

В алгебраической форме векторное произведение  c = [a × b]  в правой системе координат вычисляется как

сx = ay · bz – az · by ;
сy = az · bx – ax · bz ;
сz = ax · by – ay · bx .

В левой системе координат знаки слагаемых меняются на противоположные.

В физике обычно подразумевается, что точки привязки всех перемножаемых векторов и результирующего вектора совпадают (и вектора-сомножители, и результат их векторного произведения действуют в одной и той же точке пространства).

Свойства векторного произведения

Антикоммутативность:  [a × b] = –[b × a] .

Дистрибутивность:  [a × (b + c)] = [a × b] + [a × c] .

Сочетательность относительно скалярного множителя:  k · [a × b] = [(k · a) × b] = [a × (k · b)] .

Смешанное произведение:  a · [b × c] = [a × b] · c .

Векторный квадрат вектора всегда является нулевым вектором[a × a] = 0 . Поэтому, когда говорят о «квадрате вектора» без уточнения типа перемножения, имеют в виду скалярный квадрат (квадрат модуля вектора).

последняя правка 27.01.2011 21:01:52      В начало      На главную